Shape Identification And Ranking In Temporal Data Sets
نویسندگان
چکیده
Title of thesis: Shape Identification And Ranking In Temporal Data Sets Machon Gregory, Master of Science, 2009 Thesis directed by: Professor Ben Shneiderman Department of Computer Science Shapes are a concise way to describe temporal variable behaviors. Some commonly used shapes are spikes, sinks, rises, and drops. A spike describes a set of variable values that rapidly increase, then immediately rapidly decrease. The variable may be the value of a stock or a person’s blood sugar levels. Shapes abstractly describe a variable’s behavior. Details such as the height of a spike or its rate increase, are lost in the abstraction. These hidden details make it difficult to define shapes and compare one instance to another. For example, what attributes can be used to define a spike’s behavior? And what attributes of a spike determine its “spikiness”? The ability to define and compare shapes is important because it allows shapes to be identified and ranked, according to an attribute of interest. A lot of work has been done in the area of shape identification through pattern matching and other data mining techniques, but ideas combining the identification and comparison of shapes have received less attention. This dissertation fills the gap by presenting a set of shapes and their attributes, by which they can be identified, compared, and ranked. Neither the set of shapes, nor their attributes presented in this dissertation are exhaustive, but it provides an example of how a shape’s attributes can be used for identification and comparison. Spikes, sinks, rises, drops, lines, plateaus, valleys, and gaps are the shapes presented in this dissertation. Several attributes for each shape are identified and defined. These attributes will be the basis for constructing definitions that identify a particular behavior of a shape and allow it to be ranked. The second contribution of this work is an information visualization tool, TimeSearcher: Shape Search Edition (SSE), which allows users to explore data sets using the identification and ranking ideas, presented in this dissertation. Case studies were performed to evaluate the benefit of shape identification and ranking in different data sets. Four case studies were performed with a single user, exploring network traffic data and X-ray diffraction data. Shape Identificaiton And Ranking In Temporal Data Sets
منابع مشابه
Shape Identification in Temporal Data Sets
Shapes are a concise way to describe temporal variable behaviors. Some commonly used shapes are spikes, sinks, rises, and drops. A spike describes a set of variable values that rapidly increase, then immediately rapidly decrease. The variable may be the value of a stock or a person’s blood sugar levels. Shapes are abstract. Details such as the height of spike or its rate increase, are lost in t...
متن کاملProbabilistic Linkage of Persian Record with Missing Data
Extended Abstract. When the comprehensive information about a topic is scattered among two or more data sets, using only one of those data sets would lead to information loss available in other data sets. Hence, it is necessary to integrate scattered information to a comprehensive unique data set. On the other hand, sometimes we are interested in recognition of duplications in a data set. The i...
متن کاملHydrological Flood Simulation Using a Design Hyetograph Created from Extreme Weather Data of a High-Resolution Atmospheric General Circulation Model
To understand the characteristics of severe floods under global climate change, we created a design hyetograph for a 100-year return period. This incorporates a modified ranking method using the top 10 extreme rainfall events for present, near-future, and far-future periods. The rainfall data sets were projected with a general circulation model with high spatial and temporal resolution and used...
متن کاملStock identification of Arabian yellow fin Sea bream (Acanthopagrus arabicus) by using shape of otolith in the Northern Persian Gulf &Oman Sea
Analysis of the shape properties of fish otolith is one way to identify stocks of different species in the marine environment. Length, width, area, perimeter, form factor, aspect ratio, roundness, circularity, ellipticity and rectangularity analyses of otoliths were undertaken to assess patterns of spatial and temporal stock structure of a wide-ranging fish, the Arabian yellow fin sea bream Aca...
متن کاملFuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009